Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Opt Express ; 31(8): 12686-12692, 2023 Apr 10.
Article En | MEDLINE | ID: mdl-37157424

In this paper, we demonstrate the laser characterization of Cr:ZnS/Se polycrystalline gain media in non-selective unpolarized, linearly polarized, and twisted mode cavities. Lasers were based on post-growth diffusion-doped, commercially available antireflective-coated Cr:ZnSe and Cr:ZnS polycrystals with a length of 9 mm. The spectral output of lasers based on these gain elements in non-selective unpolarized and linearly polarized cavities was measured to be broadened to ∼20-50 nm due to the spatial hole burning (SHB) effect. SHB alleviation in the same crystals was realized in the "twisted mode" cavity, with linewidth narrowing to ∼80-90 pm. Both broadened and narrow-line oscillations were captured by adjusting the orientation of intracavity waveplates with respect to facilitated polarization.

2.
Opt Lett ; 48(9): 2273-2276, 2023 May 01.
Article En | MEDLINE | ID: mdl-37126252

Using sub-3-cycle pulses from mode-locked Cr:ZnS lasers at λ ≈ 2.4 µm as a driving source, we performed high-resolution dual-frequency-comb spectroscopy in the longwave infrared (LWIR) range. A duo of highly coherent broadband (6.6-11.4 µm) frequency combs were produced via intrapulse difference frequency generation in zinc germanium phosphide (ZGP) crystals. Fast (up to 0.1 s per spectrum) acquisition of 240,000 comb-mode-resolved data points, spaced by 80 MHz and referenced to a Rb clock, was demonstrated, resulting in metrology grade molecular spectra of N2O (nitrous oxide) and CH3OH (methane). The key to high-speed massive spectral data acquisition was low intensity and phase noise of the LWIR combs and high (7.5%) downconversion efficiency, resulting in a LWIR power of 300 mW for each comb.

3.
Opt Express ; 30(12): 20762-20766, 2022 Jun 06.
Article En | MEDLINE | ID: mdl-36224813

This joint issue of Optics Express and Optical Materials Express features 36 state-of-the art articles written by authors who participated in the international conference advanced solid state lasers held online from October 3-7, 2021. This review provides a summary of these articles covering a wide spectrum of topics around solid-state lasers from materials research to sources and from design innovation to applications.

4.
Opt Express ; 29(20): 31455-31464, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-34615237

10 µm lasing is studied in a compact CO2-He cell pressurized up to 15 atm when optically pumped by a ∼50 mJ Fe:ZnSe laser tunable around 4.3 µm. The optimal pump wavelength and partial pressure of CO2 for generating 10 µm pulses are found to be ∼4.4 µm and 0.75 atm, respectively. Without cavity optimization, the optical-to-optical conversion efficiency reached ∼10% at a total pressure of 7 atm. The gain lifetime is measured to be ∼1 µs at pressures above 10 atm, indicating the feasibility of using high-pressure optically pumped CO2 for the efficient amplification of picosecond 10 µm pulses.

5.
Opt Express ; 29(6): 8365-8367, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33820284

This Joint Issue of Optics Express and Optical Materials Express features 15 articles written by authors who participated in the international online conference Advanced Solid State Lasers held 13-16 October, 2020. This review provides a summary of the conference and these articles from the conference which sample the spectrum of solid state laser theory and experiment, from materials research to sources and from design innovation to applications.

6.
Opt Express ; 29(2): 2387-2393, 2021 Jan 18.
Article En | MEDLINE | ID: mdl-33726434

We report on a RT gain-switched Fe:ZnSe master oscillator power amplifier (MOPA) system tunable over 3.8-5.0 µm pumped by radiation of Er:YAG laser operating at 2.94 µm. The mechanically Q-switched Er:YAG laser with output energy up to 220 mJ was used as a pump source for a master oscillator and three-stage power amplifier. The maximum output energies in 200 ns pulses exceeded 60, 56, and 48 mJ at 4.4, 4.3, and 4.1 µm, respectively, under 220 mJ of pump energy. The extraction energy efficiencies were measured to be 25, 30, and 40% at the first, second, and third stages, respectively.

7.
Opt Express ; 29(2): 2458-2465, 2021 Jan 18.
Article En | MEDLINE | ID: mdl-33726440

We report, to the best of our knowledge, the first super-octave femtosecond polycrystalline Cr:ZnS laser at the central wavelength 2.4 µm. The laser is based on a non-polarizing astigmatic X-folded resonator with normal incidence mounting of the gain element. The chromatic dispersion of the resonator is controlled with a set of dispersive mirrors within one third of an optical octave over 2.05-2.6 µm range. The resonator's optics is highly reflective in the range 1.8-2.9 µm. The components of the oscillator's output spectrum at the wavelengths 1.6 µm and 3.2 µm are detected at -60 dB with respect to the main peak. Average power of few-cycle Kerr-lens mode-locked laser is 1.4 W at the pulse repetition frequency 79 MHz. That corresponds to 22% conversion of cw radiation of Er-doped fiber laser, which we used for optical pumping of the Cr:ZnS oscillator.

8.
Opt Express ; 29(3): 4287-4295, 2021 Feb 01.
Article En | MEDLINE | ID: mdl-33771011

We report a flashlamp pumped mechanically Q-switched (MQS) 2.94 µm Er:YAG laser based on a spinning mirror with a highest output energy of 805 mJ at a pulse duration of 61 ns and 13 MW of peak power at 1 Hz repetition rate. This record output energy was achieved with the use of 300 mm long MQS Er:YAG laser cavity consisting of a 70% output coupler, 7 × 120 mm AR coated Er(50%):YAG crystal, and 4200 rad/s angular speed of the spinning mirror. The pulse jitter was also measured by using optical triggering and was smaller than 10 ns for 150 ns Q-switched pulses, which could be applicable to many laser applications where precise synchronization of pulses is required.

9.
Opt Express ; 28(22): 32403-32414, 2020 Oct 26.
Article En | MEDLINE | ID: mdl-33114927

We report on the highly efficient, octave-spanning mid-infrared (mid-IR) optical parametric amplification (OPA) in a ZnGeP2 (ZGP) crystal, pumped by a 1 kHz, 2.4 µm, 250 fs Cr:ZnSe chirped-pulse amplifier. The full spectral coverage of 3-10 µm with the amplified signal and idler beams is demonstrated. The signal beam in the range of ∼3 - 5 µm is produced by either white light generation (WLG) in YAG or optical parametric generation (OPG) in ZGP using the common 2.4 µm pump laser. We demonstrate the pump to signal and idler combined conversion efficiency of 23% and the pulse energy of up to 130 µJ with ∼2 µJ OPG seeding, while we obtain the efficiency of 10% and the pulse energy of 55 µJ with ∼0.2 µJ WLG seeding. The OPA output energy is limited by the available pump pulse energy (0.55 mJ at ZGP crystal) and therefore further energy scaling is feasible with multi-stage OPA and higher pump pulse energy. The autocorrelation measurements based on random quasi-phase matching show that the signal pulse durations are ∼318 fs and ∼330 fs with WLG and OPG seeding, respectively. In addition, we show the spectrally filtered 30 µJ OPA output at 4.15 µm suitable for seeding a Fe:ZnSe amplifier. Our ultrabroadband femtosecond mid-IR source is attractive for various applications, such as strong-field interactions, dielectric laser electron acceleration, molecular spectroscopy, and medical surgery.

10.
Opt Express ; 28(10): 15035-15037, 2020 May 11.
Article En | MEDLINE | ID: mdl-32403536

This joint issue of Optics Express and Optical Materials Express features 17 state-of-the art articles written by authors who participated in the international conference Advanced Solid-State Lasers held in Vienna, Austria, from September 29 to October 3, 2019. This introduction provides a summary of these articles that cover numerous areas of solid-state lasers from materials research to sources and from design to experimental demonstration.

11.
Opt Express ; 27(24): 35079-35087, 2019 Nov 25.
Article En | MEDLINE | ID: mdl-31878683

We report, to the best of our knowledge, the first fully referenced Cr:ZnS optical frequency comb. The comb features few cycle output pulses with 3.25 W average power at 80 MHz repetition rate, spectrum spanning 60 THz in the middle-IR range 1.79-2.86 µm, and a small footprint (0.1 m2), The spectral components used for the measurement of the comb's carrier envelope offset frequency were obtained directly inside the polycrystalline Cr:ZnS laser medium via intrinsic nonlinear interferometry. Using this scheme we stabilized the offset frequency of the comb with the residual phase noise of 75 mrads.

12.
Opt Express ; 27(15): 20938-20941, 2019 Jul 22.
Article En | MEDLINE | ID: mdl-31510180

This joint issue of Optics Express and Optical Materials Express features 28 state-of-the-art articles written by authors who participated in the international "Advanced Solid State Lasers" conference, held in Boston November 4-8, 2018. This review provides a summary of these articles that cover the spectrum of solid state lasers from materials research to sources and from design innovation to applications.

13.
Opt Express ; 27(11): 16405-16413, 2019 May 27.
Article En | MEDLINE | ID: mdl-31163818

We report a technique for generation of broad and coherent femtosecond (fs) continua that span several octaves from visible to long-wave IR parts of the spectrum (0.4-18 µm). The approach is based on simultaneous amplification of few-cycle pulses at 2.5 µm central wavelength at 80 MHz repetition rate, and augmentation of their spectrum via three-wave mixing in a tandem arrangement of polycrystalline Cr:ZnS and single crystal GaSe. The obtained average power levels include several mW in the 0.4-0.8 µm visible, 0.23 W in the 0.8-2 µm near-IR, up to 4 W in the 2-3 µm IR, and about 17 mW in the 3-18 µm long-wave IR bands, respectively. High brightness and mutual coherence of all parts of the continuum was confirmed by direct detections of the carrier envelope offset frequency of the master oscillator.

14.
Opt Express ; 27(10): 13934-13941, 2019 May 13.
Article En | MEDLINE | ID: mdl-31163850

We report on room temperature gain-switched and Q-switched Fe:ZnSe lasers tunable over 3.60-5.15 µm pumped by radiation of an 2.94 µm Er:YAG laser. The maximum output energy was measured to be 5 mJ under 15 mJ of pump energy in gain-switched regime. We also demonstrated a mechanically Q-switched regime of oscillation of Fe:ZnSe lasers. This approach could be attractive for the development of high-energy short-pulse solid-state mid-IR systems operating over 3.6-5.2 µm spectral range.

15.
JCI Insight ; 4(7)2019 04 04.
Article En | MEDLINE | ID: mdl-30944258

Idiopathic pulmonary fibrosis (IPF) is a progressive disease, with a median survival of 3-5 years following diagnosis. Lung remodeling by invasive fibroblasts is a hallmark of IPF. In this study, we demonstrate that inhibition of vimentin intermediate filaments (VimIFs) decreases the invasiveness of IPF fibroblasts and confers protection against fibrosis in a murine model of experimental lung injury. Increased expression and organization of VimIFs contribute to the invasive property of IPF fibroblasts in connection with deficient cellular autophagy. Blocking VimIF assembly by pharmacologic and genetic means also increases autophagic clearance of collagen type I. Furthermore, inhibition of expression of collagen type I by siRNA decreased invasiveness of fibroblasts. In a bleomycin injury model, enhancing autophagy in fibroblasts by an inhibitor of VimIF assembly, withaferin A (WFA), protected from fibrotic lung injury. Additionally, in 3D lung organoids, or pulmospheres, from patients with IPF, WFA reduced the invasiveness of lung fibroblasts in the majority of subjects tested. These studies provide insights into the functional role of vimentin, which regulates autophagy and restricts the invasiveness of lung fibroblasts.


Idiopathic Pulmonary Fibrosis/pathology , Intermediate Filaments/metabolism , Lung/pathology , Vimentin/metabolism , Animals , Autophagy/drug effects , Biopsy , Bleomycin/toxicity , Cell Movement/drug effects , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Intermediate Filaments/drug effects , Lung/cytology , Lung/drug effects , Mice , Organoids , Primary Cell Culture , RNA, Small Interfering/metabolism , Withanolides/administration & dosage
16.
Opt Express ; 26(8): 11018-11024, 2018 Apr 16.
Article En | MEDLINE | ID: mdl-29716029

The Advanced Solid State Lasers 2017 Conference (ASSL) was held from October 1 to 5, 2017. It was an extraordinary conference at the Nagoya Congress Center in Nagoya, Japan. ASSL 2017 again suggested an impressive platform where miscellaneous perceptions with a variety of approaches to optics, photonics, sensing, laser technology, laser systems, and solid state lasers were presented. This international meeting was highly selective, leading to high level contributions through one plenary conference, 17 invited presentations, 70 regular talks, and 121 posters. The present joint issue of Optics Express and Optical Materials Express features 27 articles written by ASSL 2017 authors and covering the spectrum of solid-state lasers from materials research to sources, and from design innovation to applications.

17.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L80-L91, 2017 07 01.
Article En | MEDLINE | ID: mdl-28450285

Exposure to cadmium (Cd) has been associated with development of chronic obstructive lung disease (COPD). The mechanisms and signaling pathways whereby Cd causes pathological peribronchiolar fibrosis, airway remodeling, and subsequent airflow obstruction remain unclear. We aimed to evaluate whether low-dose Cd exposure induces vimentin phosphorylation and Yes-associated protein 1 (YAP1) activation leading to peribronchiolar fibrosis and subsequent airway remodeling. Our data demonstrate that Cd induces myofibroblast differentiation and extracellular matrix (ECM) deposition around small (<2 mm in diameter) airways. Upon Cd exposure, α-smooth muscle actin (α-SMA) expression and the production of ECM proteins, including fibronectin and collagen-1, are markedly induced in primary human lung fibroblasts. Cd induces Smad2/3 activation and the translocation of both Smad2/3 and Yes-associated protein 1 (YAP1) into the nucleus. In parallel, Cd induces AKT and cdc2 phosphorylation and downstream vimentin phosphorylation at Ser39 and Ser55, respectively. AKT and cdc2 inhibitors block Cd-induced vimentin fragmentation and secretion in association with inhibition of α-SMA expression, ECM deposition, and collagen secretion. Furthermore, vimentin silencing abrogates Cd-induced α-SMA expression and decreases ECM production. Vimentin-deficient mice are protected from Cd-induced peribronchiolar fibrosis and remodeling. These findings identify two specific sites on vimentin that are phosphorylated by Cd and highlight the functional significance of vimentin phosphorylation in YAP1/Smad3 signaling that mediates Cd-induced peribronchiolar fibrosis and airway remodeling.


Bronchioles/pathology , Cadmium/adverse effects , Vimentin/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , CDC2 Protein Kinase/metabolism , Cell Differentiation/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Collagen/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fibrosis , Gene Silencing/drug effects , Humans , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Phosphoproteins/metabolism , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Smad Proteins/metabolism , Transcription Factors , YAP-Signaling Proteins
18.
Opt Express ; 24(18): 21090-104, 2016 Sep 05.
Article En | MEDLINE | ID: mdl-27607712

We report a significant breakthrough in the development of fiber-pumped high-power CW laser systems based on Cr2+:ZnS and Cr2+:ZnSe gain media. We demonstrate output power levels of up to 140 W near 2500 nm, and 32 W at 2940 nm with corresponding optical efficiencies of 62% and 29%. Our novel approach is based on rapid simultaneous scanning of the collinear laser mode and pump beam across the Cr:ZnS/Se gain element which allows us to virtually eliminate thermal lensing effects and obtain unprecedented levels of output power with very high optical-to-optical efficiency.

19.
Opt Express ; 24(2): 1616-23, 2016 Jan 25.
Article En | MEDLINE | ID: mdl-26832539

We demonstrate efficient amplification of few-optical-cycle mid-IR pulses in single-pass continuously pumped laser amplifiers based on polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe. The 1.7 W output of a Kerr-lens mode-locked master oscillator at 2.4 µm central wavelength, 79 MHz repetition rate was amplified to 7.1 W and 2.7 W in Cr(2+):ZnS and Cr(2+):ZnSe, respectively. High peak power of the input pulses (0.5 MW) and high nonlinearity of the amplifiers' gain media resulted in a significant shortening of the output pulses and in spectral broadening. Transform-limited 40 fs pulses of the master oscillator were compressed to about 27-30 fs. The spectrum of the pulses was broadened from 136 nm to 450 nm (at -3 dB level); the span of the spectra exceeds 600 nm at -10 dB level.

20.
Opt Express ; 24(5): 5366-5375, 2016 Mar 07.
Article En | MEDLINE | ID: mdl-29092360

We report spectroscopic characterization of Fe:ZnSe quantum dots (for 2% of Zn/Fe molar ratio) fabricated by microemulsion hydrothermal synthesis. Mid-IR photoluminescence of the 5E↔5T2 transition of Fe2+ ions over 3.5-4.5 µm spectral range was observed in Fe:ZnSe quantum dot samples and kinetics of luminescence have been characterized at temperatures of 30-300 K under direct (2.788 µm) mid-IR excitation and indirect (0.355 µm) photoionization excitation. The radiative lifetime (τrad) was estimated from these measurements to be 48 µs while lifetime at room temperature was measured to be 440 ns. This agrees closely with the behavior of bulk material.

...